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The form of the two-dimensional (2D) NMR-relaxation spectra – which allow to study interstitial fluid
dynamics in diffusive systems by correlating spin-lattice (T1) and spin-spin (T2) relaxation times – has
given rise to numerous conjectures. Herein we find analytically a number of fundamental structural prop-
erties of the spectra: within the eigen-modes formalism, we establish relationships between the signs
and intensities of the diagonal and cross-peaks in spectra obtained by various 1 and 2D NMR-relaxation
techniques, reveal symmetries of the spectra and uncover interdependence between them. We investi-
gate more specifically a practically important case of porous system that has sets of T1- and T2-eigen-
modes and eigentimes similar to each other by applying the perturbation theory. Furthermore we
provide a comparative analysis of the application of the, mathematically more rigorous, eigen-modes for-
malism and the, rather more phenomenological, first-order two-site exchange model to diffusive sys-
tems. Finally we put the results that we could formulate analytically to the test by comparing them
with computer-simulations for 2D porous model systems. The structural properties, in general, are to
provide useful clues for assignment and analysis of relaxation spectra. The most striking of them – the
presence of negative peaks – underlines an urgent need for improvement of the current 2D Inverse
Laplace Transform (ILT) algorithm used for calculation of relaxation spectra from NMR raw data.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Over the past 20 years or so, multi-dimensional (MD) NMR Fou-
rier transformation (FT) spectroscopy has grown into a versatile
tool for analysis of matter [1]. All experimental techniques of the
spectroscopy rely on the measurement of precession frequencies,
called Larmor frequencies, of nuclear spins in an intense homoge-
neous and stable magnetic field to identify molecular structure
and/or electronic environment of the individual atoms of chemical
substances.

Over the 1D spectroscopy, which measures chemical shifts of
only one of the isotopes of the substance, the MD spectroscopy
has an additional advantage of establishing correlations either be-
tween Larmor frequencies and chemical shifts of different isotopes
or between various chemical shifts of the same isotope in chemical
compounds. This provides more detailed information on molecular
structure and intra-molecular dynamics in a wide range of sub-
stances, thus making the MD FT-spectroscopy into one of the most
powerful analytical methods in both chemistry [2] and structural
biology [3].
ll rights reserved.
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Nevertheless, there are numerous systems that cannot benefit
from the FT-spectroscopy either because their spectra are of no
interest or because their observation is hindered by intrinsic inho-
mogeneity of their magnetic susceptibility. This is the case of
numerous blends of, chiefly, oils and water widely used in food
and cosmetics or porous media such as concretes and reservoir
rocks. Furthermore there is a wealth of systems which can only
be studied at what is becoming to be known as ‘mobile’ NMR-spec-
trometers, whose highly inhomogeneous magnetic field prohibits
any access to FT spectroscopic data. These include NMR-equipment
used in prospecting oil [4] or studying bulky samples [5,6]. In such
situations, measurement of relaxation rates – phenomenological
quantities describing repolarisation kinetics of macroscopic mag-
netisation of a system of nuclear spins along the constant field of
the NMR spectrometer’s magnet after an excitation by radio fre-
quency (RF) irradiation – becomes essential. Being driven by mag-
netic interactions, fluctuating with time, between nuclear spins
and their nearby environment [7], relaxation reveals various chem-
ical and physical aspects of such systems.

Even in the most simple systems, several distinct relaxation
times may be useful to measure: the spin-lattice relaxation time
T1, which describes how quickly the longitudinal magnetisation –
the component of the magnetisation parallel to the magnetic field
– returns to its equilibrium non-zero value, the spin-spin relaxa-
tion time T2, which characterises the decrease of the transverse
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Fig. 1. Scheme of a diffusive system having two domains A and B, here delimited by
solid lines, with their own individual porosity /(r), relaxation rates Ra(r)’s and
diffusion tensor D(r) fields. The boundaries of the domains are characterised by
surface relaxation rate qa(r) and permeability k(r).
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magnetisation – the component of the magnetisation perpendicu-
lar to the magnetic field – towards its equilibrium zero value, and
the so-called time T1q, which describes the relaxation of the trans-
verse magnetisation while the system is irradiated at its resonance
frequency.

These rates allowed to discriminate between various compart-
ments, containing interstitial water, of live tissues [8] or distin-
guish between water and oil in emulsions [9]. They permitted to
dose solid suspensions in a very large concentration range [10].
They were also used to monitor the formation of organised struc-
tures in complex systems such as cements during their setting
[11,12] or ageing thixotrope fluids [13]. They proved very sensitive
to phase changes and so allowed to monitor freezing and melting
cycles in porous media [14]. In the field-cycling NMR, measure-
ments of relaxation rates as a function of the field strength to
which the system is exposed allowed to study, at the nanometric
scale, the movements of molecules interacting with surfaces and
quantify the time scales at which these movements take place
[15,16]. Finally relaxation rates are used extensively to create var-
ious types of contrasts in biomedical and material science mag-
netic resonance imaging (MRI) [17].

Heterogeneous systems are usually characterised by distribu-
tions of relaxation times rather than one particular relaxation time.
This situation could be observed when several fluids of different
nature, e.g. water and oils – each having its own relaxation time
– were parts of the system, or when a fluid of the same nature
was confined in several rather isolated zones, or compartments,
of the system with distinctly different physical properties, such
as pores of different size in a porous medium or different cells in
a live tissue. Nevertheless, viewed within the eigen-modes formal-
ism (see below), the relaxation rate of even a continuous fluid in
one and only cavity or in compartments connected to one another
can take more than one value. This makes us think that the widely
made assumption that each peak in a relaxation spectrum neces-
sarily corresponds to a particular compartment in the system is
not always justifiable.

The raw NMR-signal M(ti) of a system with a limited number N
of distinct spin-spin T2,n’s can, for instance, be expressed as a series

MðtiÞ ¼
XN

n¼1

wn exp
�ti

T2;n

� �
; ti > 0 ð1Þ

where wn’s are the weights of the various T2,n’s and ti’s the moments
of time at which the signal was sampled by the analogue-to-digital
converter (ADC). The values of T2,n can then be determined by fit-
ting, in the least-square sense, the experimental data with the series
of Eq. (1) [13] or by ‘curve peeling’ technique [18], and formed into a
spectrum similar to those of chemical shift distributions in the FT-
spectroscopy. The raw NMR-signal of a system with a large number
of distinct T2,n’s or with a continuous distribution s(T) of T2,n can be
formulated as a Laplace integral

MðtiÞ ¼
Z

T
sðTÞ exp

�ti

T

� �
d ln T ð2Þ

Thus the calculation of the spectrum s(T) consists here in differen-
tiating the first-kind Fredholm integral in Eq. (2).

The numerical solution of this problem is notoriously unstable
when applied to noise-impaired signals. To stabilise it, various in-
verse Laplace transformation (ILT) algorithms have been devel-
oped, viz. [19–22]. In all these algorithms, irregular solutions for
s(T) are dismissed as highly unlikely spectral structures and s(T)
is assumed to be non-negative, the latter premise being corrobo-
rated by a theoretical study [23]. In one way or another, the algo-
rithms are aimed at finding the non-negative least-square
minimum:
MinsP0

X
i

MðtiÞ�
Z

T
sðTÞexp �ti

T

� �
dlnT

� �2

þk
Z

T

@2s

@ðlnTÞ2

 !2

dlnT

8<
:

9=
;
ð3Þ

where the Thikonov regularisation term is weighed by the parsi-
mony coefficient k. In general, the regularisation is applied to the
square of the norm of the second derivative of the spectrum, but
it could also be applied to the square of the norm of the first deriv-
ative or even to that of the spectrum itself without any notable inci-
dence on the form of thus obtained spectrum. The coefficient k is
chosen as large as possible, making, though, sure that the covari-
ance between the experimental data and the signal resulted from
the minimisation does not exceed the experimental noise level.

These algorithms encouraged development of the 1D nuclear
spin relaxation spectroscopy, or 1D ILT-spectroscopy, which has
been extensively used for analysis of fruit and vegetables [24,8]
as well as for studying fluids confined in porous materials. The
NMR-signal of such systems stems chiefly from the interstitial fluid
whose molecules can diffuse in domains delimited by solid bound-
aries, e.g. cell boundaries or pores surfaces, and with which they
can interact in various ways, e. g. adsorption, chemical exchange,
magnetic dipole-dipole coupling.

In diffusive systems (see Fig. 1) generally, the local non-equilib-
rium magnetisation density m(r) of the confined fluid, to which the
observable NMR-signal is proportional, can be expressed [25] by
the relaxation-diffusion equation:

/ðrÞ @m
@t
¼ r � DðrÞrm� /ðrÞRaðrÞm; ð4Þ

where /, D and Ra = 1/Ta are the local fluid concentration, diffusion
tensor and relaxation rate respectively, and the subscript a = 1, 2 or
1q depending on which type of relaxation it is dealt with. NMR-
relaxation of the fluid driven by its interaction with the boundary
between two domains A and B, and magnetisation transfer between
these domains are first-order processes taken in account in the
boundary condition:

nAðrÞ � DAðrÞrmA � /AðrÞqA;aðrÞmA

¼ �nBðrÞ � DBðrÞrmB þ /BðrÞqB;aðrÞmB ¼ kðrÞ � ðmA �mBÞ ð5Þ

where subscripts A and B denote quantities pertaining to either side
of the boundary: nA and nB are the normal unit-vector directed to-
wards the inside of domains A and B respectively, qA,a and qB,a the
surface relaxation rates in either domain, also called ‘relaxivities’.
The latter can be significantly higher than that inside the fluid Ra.
Finally k (r) is the surface permeability. Naturally, the permeability
k has to be set to zero when it deals with the boundaries between
fluid and solid phases. Eqs. (4) and (5), due to the term / and the
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tensorial character of D, remain rather general and allow to model
porous materials with nanometric confinement as well as biological
tissues.

When the porous media is saturated with the fluid and has
pores big enough for the diffusion of most of the fluid not to be af-
fected by the presence of the boundaries, Eqs. (4) and (5), with all
the quantities they include, can be viewed as equations that per-
tain to the inside of the pores only. If, moreover, one assumes that
there is no exchange of fluid between pores of different size, Ta’s
averaged over the total volume of the pores can be found to in-
crease with the typical diameter of the pore d and to tend asymp-
totically towards [25]

1
Ta
� 1

Tbulk
/ q

d
when

qd
Dbulk

� 1 ð6Þ

and

1
Ta
� 1

Tbulk
/ Dbulk

d2 when
qd

Dbulk
� 1 ð7Þ

These two extreme cases, called ‘surface limited relaxation’ and ‘dif-
fusion limited relaxation’ respectively, were observed in model-
controlled media [26].

Due to this direct relationship between Ta’s and d, the 1D ILT of
relaxation data developed into a tool of choice for characterising
the porous texture of cement pastes [27,18] , and water and oil
in rocks [28]. On the other hand, various faults in the 1D ILT-algo-
rithms as defined by Eq. (3) became conspicuous. In particular, the
algorithms tended to break each broad component of the spectrum
into several narrower components [29,12]. An attempt was made
at alleviating this drawback and getting rid of the premise that
there may be no negative components in the spectrum [29]. Unfor-
tunately, the algorithm has not come into the widespread use and
so inspired little further algorithm development.

The idea of the MD ILT-spectroscopy, correlating various relax-
ation mechanisms [30,31], emerged in the early 1980’s. To acquire
a T1–T2 spectrum (see Fig. 2), a non-equilibrium magnetisation,
which most often results from an initial RF-irradiation of the sam-
ple, is allowed to relax; after a while t1 the longitudinal magnetisa-
tion is placed in to the transverse plane by another RF-pulse and is
left to relax during a while t2; the transverse magnetisation will in-
duce a signal:

Mðt1; t2Þ ¼
ZZ

T1 ;T2

sðT1; T2Þ exp � t1

T1
� t2

T2

� �
d ln T1d ln T2 ð8Þ

This signal has been interpreted as a sum of the signals pertaining
to the various domains of the inhomogeneous sample, each with
a

b

c

Fig. 2. NMR experimental scheme to acquire 2D (a) T1–T2, (b) T2–T2 and (c) T1–T1

exchange spectra.
its own T1 and T2, and so proportional to exp � t1
T2
� t2

T2

� �
. After the

experiment is repeated for various, gradually incremented, t1,i and
t2,j, a 2D relaxation spectrum s(T1,T2) can be obtained by the 2D
ILT of the experimental data M(t1, t2). Such spectrum allows in par-
ticular to discriminate between the sample domains sharing one of
the relaxation times value. In the T2–T2 experiment, two periods of
spin-spin relaxation are separated by a period of fixed duration,
called ‘mixing time’, during which the spin system is subject to
spin-lattice relaxation [32]. This allows for ‘exchange’ between
the populations of spins relaxing at different T2-rates, to which cor-
respond different spectral lines in 1D spectra, and so for appearance
of cross-peaks in 2D spectra.

Theoretically, both 2D FT and ILT are equivalent to correspond-
ing two consecutive 1D transformations along time scales t1 and t2.
In practice, though, the numerical 1D ILT-algorithms available to
date make this transformation non-linear and thus cannot be used
for making a 2D ILT in two steps. This made it necessary to IL-
transform experimental data in one single step, which significantly
slowed down the development of the 2D ILT-spectroscopy. One
had to wait till 2002 for the first 2D ILT-algorithm capable of being
performed on an ordinary PC [33,34]. It consists in finding the
minimum:

MinsP0

P
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which is a generalisation of Eq. (3). Nevertheless it still implies that
the spectrum should be positive s(T1,T2) everywhere and applies
Tikhonov regularisation to the square of the norm of the spectrum.

The occurrence of the algorithm motivated numerous NMR-
spectroscopists to design new pulse sequences capable of produc-
ing data necessary for various relaxation correlation T1–T2 [34] and
exchange T2–T2 [35] and T1–T1 [36] (see Fig. 2) spectra. The ideas of
these pioneering methods were further developed in designing
experimental schemes for correlating different components of
the diffusion tensor in porous media [37], various relaxation times
and the sample’s intrinsic magnetic field inhomogeneity [38], or
chemical shifts [36] as well as relaxation times measured in vari-
ous magnetic fields [39].

These techniques already allowed in-depth study of polymers
[40], fruit and vegetables [41,36], dairy products [42], ‘cement-
based materials’ [43], as well as water and oil in rocks [44]. Specif-
ically, the T1–T2 spectra have been used to identify different do-
mains in heterogeneous samples and to measure T1/T2 ratios for
those domains. Knowledge of the latter proved crucial for the
quantitative modelling of molecular dynamics of fluids adsorbed
at surfaces [35,44]. The cross-peaks in the T2–T2 spectra of hetero-
geneous systems have most often been interpreted as an indication
of exchange of matter among their various domains [35].

Two theoretical approaches have so far been taken to interpret
the appearance of cross-peaks. One of them is the first-order two-
site exchange model [45,35]. This phenomenological model, fa-
voured by many physicists, allows to monitor the exchange rates
by measuring the cross-peaks’ intensities as a function of the mix-
ing period [46–49]. The other is the eigen-modes formalism
[50,51], in which the peaks in the spectrum are accounted for by
the presence of non-zero scalar products between the spin-lattice
and spin-spin eigenmodes. Being rather more abstract and imply-
ing no exchange process in principle, the latter allowed in particu-
lar to account for the presence of the diagonal and cross-peaks in
such a simple system as one isolated pore, for which the former
would predict the appearance of one diagonal peak only.

Nevertheless the interpretation of both 1 and 2D relaxa-
tion spectra has been seriously impeded by the faults in the
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ITL-algorithms. Thus, for the reasons inherent in the algorithms,
the locations of the cross-peaks in T2–T2 spectra were found shifted
with respect to the corresponding diagonal peaks [52] and each of
the broad components split into several narrower components by
so-called ‘pearling effect’ [37]. Furthermore, unlike the 1D algo-
rithms [53], the 2D one provides no mean to estimate the error
for the spectra calculated from noise-impaired experimental data.

Thus, an improvement on the present ILT-algorithms remains
the main concern for the further development of the ITL-spectros-
copy [39]. In this connection, several questions have been raised
over the structure of the relaxation spectra: do the spectra have
to be symmetrical, anti-symmetrical or asymmetrical? Can there
be peaks in the T1–T2 spectra for which T1 < T2? Can there be peaks
with negative amplitudes in the T1–T2 spectra [46,50]? Can there
be cross-peaks in the T1–T2 spectra of the systems [54] in which
T1 = T2? How to maximise the cross-peaks’ intensities? Answering
at least some of these questions could help to design a more ade-
quate ILT-algorithm.

Herein we shall complete our preceding work [51] and establish a
number of general structural laws for the 2D relaxation spectra of
diffusive systems within the eigenmodes theory. We shall also re-
veal some strong tendencies, rather than laws, of the spectra draw-
ing on both the perturbation theory for sets of alike relaxation
eigenmodes and the phenomenological first-order two-site ex-
change model. The results inferred theoretically will be put to the
test by numerical simulations of the spectra of 2D model porous
media. The numerical methods we used in this work will be outlined.

2. Theory: NMR-relaxation in diffusive systems

2.1. Eigenmodes formalism

2.1.1. General case

The eigenmode formalism is outlined and applied to describe
nuclear spin relaxation in fluids confined in porous media. The
expressions of the FID-signal generated in the T1–T2,T1–T1 and
T2–T2 experiments as well as their spectra obtained by Laplace
inversion are given.
For each of the relaxation processes a mentioned above, it is

possible [55] to construct a basis of a countable number of real
orthonormal eigenmodes wa,n(r),n = 1,2, . . ., i.e.Z

r
/ðrÞWa;nðrÞWa;mðrÞdr ¼ dn;m; ð10Þ

where the Krönecker symbol dn,m = 1 when n = m and dn,m = 0 when
n – m – associated with eigenvalues sa,n of the relaxation time ta –
so that each of them satisfies

� 1
sa;n

/ðrÞWa;nðrÞ¼r�DðrÞrWa;nðrÞ�/ðrÞRaðrÞWa;nðrÞ when r2X

ð11Þ
derived from Eq. (4), and meets the condition of Eq. (5) at the
boundary between two neighbouring domains A and B

nAðrÞ � DAðrÞrWa;nðrÞA � /AðrÞqA;aWa;nðrÞA
¼ �nBðrÞ � DBðrÞrWa;nðrÞB þ /BðrÞqB;aðrÞWa;nðrÞB
¼ kðrÞðWa;nðrÞA �Wa;nðrÞBÞ when r 2 @X ð12Þ

where X and @X stand for the inside and the boundaries of the var-
ious domains of the system respectively.

The time-evolution of the general solution of Eq. (4) can then be
formulated as

mðr; tÞ ¼
X1
n¼1

anWa;nðrÞ � exp � t
sa;n

� �
ð13Þ
where

an ¼
Z

r2X
/ðrÞWa;nðrÞmðr; t ¼ 0Þdr ð14Þ

The sa, n’s are unique and can be numbered so that
sa,1 P sa,2 P sa,3P� � �. Moreover, in what follows, we shall assume
all sa,n’s to be non-degenerated, i.e. only one particular wa,n(r) will
be associated with each of the sa,n’s, as the conclusions we shall
draw herein can easily be generalised for the degenerated sa,n’s.

As will transpire below, Eqs. (13) and (14) are more convenient
to write as

jmðr; tÞ >¼
X

n

< Wa;nðrÞjmðr; t ¼ 0Þ > �jWa;nðrÞ

> exp � t
sa;n

� �
ð15Þ

in the ‘bra-ket’ notation – in which the modes jWa,ni and the mag-
netisation state of the system jmi are viewed as vectors in the space
of the real functions of variable r – and where we defined the scalar
product as

hf jgi �
Z

r
/ðrÞf ðrÞgðrÞdr ð16Þ

The signal that corresponds to the non-equilibrium part of magnet-
isation and which can be measured in one of the common NMR-
relaxation experiments – e.g. the ‘inversion-recovery’ [56], to
measure T1 ; CPMG [57,58], to measure T 2 ; or experiments in
the rotating frame [59,60], to measure T 1q–at a given moment of
the time t can be written as

MðtÞ �
Z

r
/ðrÞmðr; tÞdr ¼ h1jmðtÞi ð17Þ

where j1i is the scalar field equal to one everywhere in the fluid
phase of the system.

The initial state jm(t = 0)i is most often proportional to m0j1i,
where m0 stands for the equilibrium magnetisation density. Com-
bining Eqs. (15) and (17) [23], the non-equilibrium part of the sig-
nal can be shown to be proportional to

MaðtÞ ¼ m0

X
n

h1jWa;ni2 expð�t=sanÞ ð18Þ

and its spectrum, after a 1D ILT, to

SaðTÞ ¼ m0

X
n

h1jWa;ni2dT;sa;n ð19Þ

Thus the spectral lines of amplitude

STa ðnÞ ¼ m0h1jWa;ni2 ð20Þ

will occur at T = sa,n only and these amplitudes are positive.
Likewise, the signal in the T1–T2 experiment [50] can be ex-

pressed as

Mðt1; t2Þ ¼ m0

X
n;m

h1jW1;nihW1;njW2;mihW2;mj1i

� exp � t1

s1;n
� t2

s2;m

� �
ð21Þ

and the spectral lines of amplitude

ST1�T2 ðn;mÞ ¼ m0h1jW1;nihW1;njW2;mihW2;mj1i ð22Þ

will have the coordinates (s1,n,s2,m) in the corresponding 2D
spectrum.

The signal in the T2–T2 experiment, in which two spin-spin
relaxation periods t1 and t2 are separated by a spin-lattice mixing
period smix, can be formulated as
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Mðt1; t2Þ ¼ m0

X
n;m;p

h1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i

� exp � t1

s2;n
� smix

s1;p
� t2

s2;m

� �
ð23Þ

and its spectral lines of amplitude

ST2�T2 ðn;mÞ ¼ m0

X
p

h1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i

exp�ðsmix=s1;pÞ ð24Þ

will have coordinates (s2,n,s2,m).
Finally the signal in the T1–T1 experiment [36], in which a spin-

spin mixing period smix is sandwiched between two spin-lattice
relaxation periods t1 and t2, can be written as [51]

Mðt1; t2Þ ¼ m0

X
n;m;p

h1jW1;nihW1;njW2;pihW2;pjW1;mihW1;mj1i

� exp � t1

s1;n
� smix

s2;p
� t2

s1;m

� �
ð25Þ

and its spectral lines of amplitude

ST1�T1 ðn;mÞ ¼ m0

X
p

h1jW1;nihW1;njW2;pihW2;pjW1;mihW1;mj1i

� expð�smix=s2;pÞ ð26Þ

will have coordinates (s1,n,s1,m).
It should be noted that all results reported in this section were

obtained from the system of Eqs. (4) and (5) only. The latter de-
scribe nuclear spin relaxation of fluids confined in porous media
or biological systems in great generality and could potentially
be further generalised for some other types of systems. The eigen-
mode formalism can be applied to any systems described by lin-
ear equations implying exchange, diffusion and nuclear spin
relaxation of the first order. This model, the main subject of the
present study, can be further refined for it to be applicable to
more complex systems such as blends of different types of mole-
cule, miscible or not, confined or free and with or without mag-
netisation exchange, e.g. mixtures of alkanes in a test-tube
(bulk hydrocarbon) or those of water and hydrocarbon in porous
media. For such systems all conclusions made here will still be
valid.
2.1.2. Case of similar sets of eigenmodes

The eigenmode formalism is combined with the perturbation the-
ory to describe nuclear spin relaxation in fluids confined in porous
media having alike sets of T1- and T2-eigenmodes.

Within the eigen-modes formalism, the vectors jWa,ni can have
arbitrary directions in the functional space. In practice, though,
there happen to be strong correlations among the spin-lattice
and spin-spin relaxation modes. In particular, jW1,ni and jW2,ni
modes were shown to become similar to one another in porous
media, when n’s are big enough [23]. Moreover, the Ra(r) and
qa(r) were found experimentally to be of the same order of magni-
tude for various a in various systems. To take into account these
particularities, we shall assume the differences between the vol-
ume fields Ra(r), on the one hand, and between the surface fields
qa(r), on the other hand, to be small, i.e. R2(r) = R1(r) + dR(r),
where dR(r)� R1(r) < R2(r) and q2ðrÞ ¼ q1ðrÞ þ dqðrÞ, where
dq(r)� q1(r) < q2(r), and regard dR(r) and dq(r) as small perturba-
tions. Applying the quantum perturbation theory [61] to the relax-
ation eigenmodes, we generalise here the previous results [62] and
approximate jW2,ni as a linear combination ofjW1,ni’s:

jW2;ni � jW1;ni þ
X
m–n

hW1;mjdR; dqjW1;ni
1=s1;n � 1=s1;m

jW1;mi ð27Þ
where

hW1;mjdR; dqjW1;ni ¼
Z

r2X
/ðrÞdRðrÞW1;mðrÞW1;nðrÞdr

þ
Z

r2@X
/ðrÞdqðrÞW1;mðrÞW1;nðrÞdS ð28Þ

The second-order approximation of the eigenvalues 1
s2;n

can be writ-
ten as

1
s2;n
� 1

s1;n
þ hW1;njdR; dqjW1;ni þ

X
m–n

hW1;njdR; dqjW1;mi2

1=s1;n � 1=s1;m
ð29Þ

and the first-order approximation of the scalar products of jW1,ni
and jW2,ni as

hW1;njW2;ni � 1þ OðdR2; dq2Þ ð30Þ

and

hW1;mjW2;ni �
hW1;mjdR; dqjW1;ni

1=s1;n � 1=s1;m
when m – n ð31Þ
2.2. First-order two-site exchange model

The Bloch–McConnell model is outlined and applied to describe
nuclear spin relaxation in fluids confined in porous media. The
expressions of the FID-signal generated in the T1–T2, T1–T1 and
T2–T2 experiments as well as their spectra, obtained by Laplace
inversion, are derived.

A much simpler framework to consider relaxation in diffu-
sive media was set by analogy with the Bloch–McConnell model
of the first-order chemical exchange of matter between two
magnetically inequivalent sites [63,1] and has found more fa-
vour than the eigen-modes formalism with NMR-spectroscopists
[45].

Within this phenomenological model, the system is supposed to
have two compartments A and B of volumes VA and VB, each having
its own relaxation time, Ta,A or Ta,B respectively. The flux of mag-
netisation JA?B between the compartments is assumed to be
engendered by and proportional to the difference between suppos-
edly uniform magnetisation densities mA and mB in the compart-
ments, i.e. JA?B = k(mA �mB), where k is the exchange rate,
independent of relaxation. A system of differential equations can
then be written for mA and mB:

VA
@mA

@t
¼ �VARa;AmA þ kðmB �mAÞ

VB
@mB

@t
¼ �VBRa;BmB þ kðmA �mBÞ

ð32Þ

where Ra,A = 1/Ta,A and Ra,B = 1/Ta,B are relaxation rates in the com-
partments. Note that we do not use quite the same notions as those
found in literature [45,35,46–49]. The magnetisation density of the
system at equilibrium is supposed to be uniform, i.e. m0 = mA(t =
0) = mB(t = 0), and the signal acquired in the NMR-relaxation exper-
iments can be expressed as M(t) = VAmA(t) + VBmB(t).

Previous works [46] allowed to express analytically the ampli-
tudes of the components and their positions in the relaxation spec-
tra as a function of the coefficients of Eq. (32). These expressions
are rigorous yet rather obscure and, we believe, help little to
understand the physical aspects of the system.

Here is our, phenomenologically clearer, approach to deal with
the problem, where the coefficient of Eq. (32) intervene rather
implicitly, though. Eq. (32) can be written more laconically as

@X
@t
¼ KX; ð33Þ



Fig. 3. Dimensionless, second term Y in Eq. (39) as a function of ba. The magnitudes
of the quantities dR1,dR2, b0,b1 and b2 were chosen arbitrarily.
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where

K ¼
�Ra;A � k

VA

kp
VAVB

kp
VAVB

�Ra;B � k
VB

0
@

1
A and jXi ¼

p
VAmAp
VBmB

 !
ð34Þ

Introducing the vector

j1i ¼
ffiffiffiffiffiffi
VA
pffiffiffiffiffiffi

VB
p

 !
ð35Þ

the experimental initial conditions and the measured signal can be
formulated respectively as

jXðt ¼ 0Þi ¼ m0j1i and MðtÞ ¼ h1jXðtÞi ð36Þ

Thus we find ourselves in the same formal frame as that of eigen-
modes, described above, except that now the system evolves in a
2D space instead of the functional space of infinite dimensionality.
Being symmetric, the operator K has two orthonormal eigenmodes
of general form

jWa;þi ¼
cos ba

sin ba

� �
and jWa;�i ¼

sin ba

� cos ba

� �
; ð37Þ

which are thoroughly defined by setting the angle ba dependent of
the coefficients of the system, and whose eigenvalues we shall de-
note as sa,+ and sa,� respectively. Using the identity

K ¼ � 1
sa;þ
jWa;þihWa;þj �

1
sa;�
jWa;�ihWa;�j; ð38Þ

we deduce three relationships:

cotgð2baÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
VAVB
p

2
Ra;B � Ra;A

k
þ 1

VB
� 1

VA

� �
; ð39Þ

1
sa;þ
¼ 1

2
Ra;A þ Ra;B þ

k
VA
þ k

VB

� �
� kffiffiffiffiffiffiffiffiffiffiffi

VAVB
p

sin 2ba
and ð40Þ

1
sa;�
¼ 1

2
Ra;A þ Ra;B þ

k
VA
þ k

VB

� �
þ kffiffiffiffiffiffiffiffiffiffiffi

VAVB
p

sin 2ba
; ð41Þ

It appears to be possible to chose the value of ba within 0 6 ba < p/2.
Either eigenvalue can be shown to be positive, though.

Eq. (39) indicates that ba is a decreasing function of dRa = Ra,B–
Ra, A (see Fig. 3), while Eqs. (40) and (41) show that jWa,+i is always
the fundamental state of the system with

sa;þ P sa;� P 0 ð42Þ

The state j1i can be rewritten as

j1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA þ VB

p cos b0

sin b0

� �
ð43Þ

where the angle b0 satisfies 0 6 b0 < p/2 and

cotgð2b0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
VAVB
p

2
1

VB
� 1

VA

� �
ð44Þ

The introduction of b0 and ba allows to express concisely the scalar
products between jwa,+i, jwa,�i and j1i (see Fig. 4):

h1jWa;þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA þ VB

p
cosðba � b0Þ

h1jwa;�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA þ VB

p
sinðba � b0Þ ð45Þ

Comparing Eqs. (39) and (44), we notice that ba=b0 when dRa = 0.
This remarkable property will allow us to analyse the signs of the
scalar products as a function of the sign of dRa, and, ultimately,
those of the difference between the relaxation times Ta,A and Ta,B.

The relaxation spectra can be calculated by drawing on the re-
sults of the eigen-modes formalism. Two spectral lines of
amplitudes
Saðsa;þÞ ¼ m0ðVA þ VBÞ cos2ðba � b0Þ
Saðsa;�Þ ¼ m0ðVA þ VBÞ sin2ðba � b0Þ ð46Þ

will appear at the coordinates sa,+ and sa,� in the 1D Ta-spectrum.
The four components of the T1–T2 spectrum will be:

ST1�T2 ðs1;þ; s2;þÞ ¼ m0ðVA þ VBÞ cosðb1 � b0Þ cosðb2 � b1Þ
cosðb2 � b0Þ

ST1�T2 ðs1;þ; s2;�Þ ¼ m0ðVA þ VBÞ cosðb1 � b0Þ sinðb2 � b1Þ
sinðb2 � b0Þ

ST1�T2 ðs1;�; s2;þÞ ¼ �m0ðVA þ VBÞ sinðb1 � b0Þ sinðb2 � b1Þ
cosðb2 � b0Þ

ST1�T2 ðs1;�; s2;�Þ ¼ m0ðVA þ VBÞ sinðb1 � b0Þ cosðb2 � b1Þ
sinðb2 � b0Þ ð47Þ

where b1 and b2 are the angles ba calculated for spin-lattice and
spin-spin relaxation, respectively. Finally the components of the
T2–T2 spectrum are:

ST2�T2 ðs2;þ; s2;þÞ ¼ m0ðVA þ VBÞ cos2ðb2 � b0Þ
�

cos2ðb2 � b1Þ

exp �smix

s1;þ

� �
þ sin2ðb2 � b1Þ exp � smix

s1;�

� ��

ST2�T2 ðs2;þ; s2;�Þ ¼ ST2�T2 ðs2;�; s2;þÞ
¼ m0ðVA þ VBÞ cosðb2 � b0Þ sinðb2 � b0Þ

cosðb2 � b1Þ sinðb2 � b1Þ exp �smix

s1;þ

� �
� exp � smix

s1;�

� �� �

ST2�T2 ðs2;�; s2;�Þ ¼ m0ðVA þ VBÞ sin2ðb2 � b0Þ
�

sin2ðb2 � b1Þ exp

�smix

s1;�

�
þ cos2ðb2 � b1Þ exp � smix

s1;�

� �
gð48Þ

�

and those of the T1–T1 spectrum:

ST1�T1 ðs1;þ; s1;þÞ ¼ m0ðVA þ VBÞ cos2ðb1 � b0Þ
�

cos2ðb2 � b1Þ exp

� smix

s2;þ

� �
þ sin2ðb2 � b1Þ exp � smix

s2;�

� ��



Fig. 4. 2D vector representation of the eigen-modes, jW1,+i, jW1,�i, jW2,+i and jW2,�i
as well as the uniform state as a function of the angles b0,b1 and b2.

j

Fig. 5. 2D porous system divided into square cases by a Cartesian mesh. White and
grey pixels represent the pores’ inside and the solid matrix respectively.
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ST1�T1 ðs1;þ; s1;�Þ ¼ ST1�T1 ðs1;�; s1;þÞ
¼ �m0ðVA þ VBÞ cosðb1 � b0Þ sinðb1 � b0Þ

cosðb2 � b1Þ sinðb2 � b1Þ exp � smix

s2;þ

� �
� exp � smix

s2;�

� �� �

ST1�T1 ðs1;�; s1;�Þ ¼ m0ðVA þ VBÞ sin2ðb1 � b0Þ
�

sin2ðb2 � b1Þ

exp � smix

s2;þ

� �
þ cos2ðb2 � b1Þ exp � smix

s2;�

� ��
ð49Þ
a

b c

Fig. 6. Three types of neighbourhood to the pore’s boundary in which the pixel can
be found: pixel (i, j) is (a) surrounded by ‘empty’ pixels only, (b) next to a ‘filled’
pixel and (c) next to two ‘filled’ pixels. White and grey pixels represent the pores’
inside and the solid matrix respectively. Round grey and white spots in the centre of
pixels indicate, respectively, the locations where magnetisation is calculated and
set to a fictitious value to fulfil the boundary conditions.
3. Numerical methods

The finite-difference time-domain numerical approach is outlined
and applied to find approximate solution of the diffusion-relaxation
equation system. The algorithm we used to find eigenmodes and
eigenvalues as well as our method of simulation of relaxation spec-
tra are described.

The finite-difference time-domain (FDTD) approach [64] can be
applied to find numerically solutions of Eqs. (4) and (5) and to de-
duce eigenmodes. Thus found modes can be introduced into Eqs.
(20), (22), (24) and (26) to simulate the relaxation spectra.

3.1. Solving the diffusion–relaxation equations

If we assume that all relaxation processes and diffusion that
take place in the system are uniform and isotropic, i.e. that Ra’s
and qa’s are independent of r and D is a scalar constant, and limit
ourselves to the 2D porous systems, Eqs. (4) and (5) will become
simply

@m
@t
¼ DDm� Ram ð50Þ

and

nDrm ¼ qm ð51Þ

The FDTD allows to find approximate solutions of these equa-
tions and consists in the partition of the 2D system into square pix-
els of the side length dx by a Cartesian mesh (see Fig. 5). Two types
of pixel are so generated: ‘empty’ pixels, corresponding to the
pores, and ‘filled’ pixels, corresponding to the solid matrix. Starting
from an initial state of magnetisation mi, j(t = 0) in the centres of the
pixels of coordinates (i, j), magnetisation mi, j(tn) is calculated itera-
tively at discrete moments tn = ndt, n = 1,2,3 . . .. For an ‘empty’
pixel (i, j) whose neighbouring pixels on the left, on the right, above
and below are also ‘empty’ (Fig. 6a), the iterative formula is
mi;jðtnþ1Þ ¼ mi;jðtnÞ

þ Ddt
miþ1;jðtnÞ þmi�1;jðtnÞ þmi;jþ1ðtnÞ þmi;j�1ðtnÞ � 4mi;jðtnÞ

dx2

� �
ð52Þ

When one of the neighbouring pixel of the pixel (i, j), e.g. (i–1, j) is
‘filled’ (Fig. 6b), mi�1,j(tn) in Eq. (52) is substituted – as it was previ-
ously done in 1D simulations [65] – by a fictitious magnetisation
state

~mi�1;jðtnÞ ¼
2q� Ddx
2qþ Ddx

mi;jðtnÞ ð53Þ

so that the discretised boundary condition

D
mi;jðtnÞ þ ~mi�1;jðtnÞ

2
¼ q

mi;jðtnÞ � ~mi�1;jðtnÞ
dx

ð54Þ

is met at the interface (i � 1/2,j) between these two pixels.
If the pixel (i, j) is in a corner (Fig. 6c), e.g. when both (i–1, j) and

(i, j � 1) are ‘filled’, then not only mi�1,j(tn), but also mi,j�1(tn) have
to be replaced by the fictitious states ~mi�1;jðtnÞ and ~mi;j�1ðtnÞ in
Eq. (52). Mention should be made, though, that such corners are
most often a pure product of the present numerical method, in
which smooth boundaries of the system are fragmented into parts
parallel to either the axis~i or the axis~j the orthogonal Cartesian
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frame. Using the expression of Eq. (53) for the fictitious magnetisa-
tions would result in overestimating the effect of the boundary on
relaxation of the nearby interstitial fluid wherever the genuine
boundary was not parallel to one of the axes of the Cartesian frame.
To alleviate this problem, the surface relaxation rate q in Eq. (53)
should be weighed by the factor 1ffiffi

2
p :

~mi�1;jðtnÞ ¼ ~mi;j�1ðtnÞ ¼
q
ffiffiffi
2
p
� Ddx

q
ffiffiffi
2
p
þ Ddx

mi;jðtnÞ ð55Þ

With thus defined ~mi�1;jðtnÞ and ~mi;j�1ðtnÞ, the impact of the bound-
ary on the relaxation will be taken into account adequately when it
is parallel to either of the axes or to the bisector of the angle be-
tween them. For the boundaries tilted otherwise with respect to
the axes, the error will also be significantly smaller than that which
would be generated by the use of Eq. (53). The situations where the
pixel has three or four ‘filled’ neighbouring pixels (not shown here)
are dealt with similarly.

The time increment was set according to

dt ¼ 1
8

dx2

D
ð56Þ

to ensure stability and reasonable precision of the programme and
to avoid generation of spurious modes.

3.2. Finding eigenmodes

The relaxation eigenmodes can be numerically approximated in
a way similar to that in which vibration eigenmodes of fractal
drums were previously determined [66].

An arbitrary initial magnetisation state mi,j(t0 = 0) is injected
into the discrete diffusion-relaxation equation, Eq. (52), to calcu-
late the state at the moment t1 = dt in time. This new state mi,j(t1)
is injected into Eq. (52) to calculate the state at the moment
t2 = 2dt. Carrying on this iterative process will reveal the time-evo-
lution of the system’s magnetisation, analytically expressed by Eq.
(15). After a while long enough, all the members of the sum in Eq.
(15) superior to the first will have faded away owing to the expo-
nentially decreasing factors and Eq. (15) will become

jmi;jðt !1Þi � Wa;1jmi;jðt ¼ 0Þ
	 


jWa;1i exp � t
sa;1

� �
; ð57Þ

from where the fundamental mode jWa,1i can be obtained by renor-
malising jmi, j(t ?1)i. The eigen-time sa,1 is determined by com-
paring the amplitudes of the states jm(t)i and jm(t + dt)i. Other
modes and times are sought for in a similar manner. To find the
next, say (N+1)th mode, the initial state mi, j(t1 = 0) is first projected
on to the subspace orthogonal to the N modes already found:

jm0ðt ¼ 0Þi ¼ jmðt ¼ 0Þi �
XN

n¼1

hWnjmðt ¼ 0Þi � jWni

¼
X1

n¼Nþ1

hWnjmðt ¼ 0Þi � jWni ð58Þ

and this projection is then injected into Eq. (52).

3.3. Simulation of relaxation spectra

To simulate 2D relaxation spectra, two series of eigenmodes
jW1,ni and jW2,ni, 1 6 n 6 N, are calculated as described in the pre-
vious section for two surface relaxation rates q1 and q2, depending
on whether it deals with spin-lattice or spin-spin relaxation. Only a
limited number N of modes can effectively be calculated. This lim-
itation, as can be seen from Eq. (22), will result in restricting obser-
vation of the T1–T2 spectra to the zone where T1,T2 P s1,N,s2,N

only. On the other hand, it will introduce an error:
ST2�T2 ðn;mÞ �m0

XN

p¼1

h1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i expð�smix=s1;pÞ
�����

�����
¼ m0

X1
p¼Nþ1

h1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i expð�smix=s1;pÞ
�����

�����
6 m0jh1jW2;nihW2;mj1ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XN

p¼1

jhW1;pjW2;nij2
vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XN

p¼1

jhW1;pjW2;mij2
vuut exp � smix

s1;N

� �

ð59Þ

in the T2–T2 spectra as the infinite sum in Eq. (24) is approximated
by the finite sum:

ST2�T2 ðn;mÞ � m0

XN

p¼1

h1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i

� expð�smix=s1;pÞ ð60Þ

In practice, though, these errors have turned out to be smaller than
round-off error of our computer. A similar error occurs in the T1–T1

spectra.

4. Results and discussion

4.1. General properties of the relaxation spectra

We developed further [51] the use of eigen-modes formalism
for description of 2D relaxation spectra, pioneered by Song et al.
[50]. The expressions we deduced within the formalism make con-
spicuous a number of structural properties shared by all relaxation
spectra independently of the system to study. Few of these proper-
ties were already reported [51], though often with no proper ana-
lytical prove. Hereafter, we give an extended list of, this time,
thoroughly proved properties of the spectra.

(a) Cross-peaks in the 2D spectra

When jW1,ni’s and jW2,ni’s are identical – which does not neces-
sarily mean that s1,n’s and s2,n’s are so as well – the scalar products
hW2,njW1,mi’s are equal to zero for n – m and the T1–T2 spectra will
contain diagonal peaks, of intensity

ST1�T2 ðn;nÞ ¼ m0h1jW2;ni2; ð61Þ

only, as

ST1�T2 ðn;mÞ ¼ 0 when n – m ð62Þ

The same goes for the T2–T2 and T1–T1 spectra:

ST2�T2 ðn;mÞ ¼ m0dn;mh1jW2;ni2 expð�smix=s1;nÞ ð63Þ
ST1�T1 ðn;mÞ ¼ m0dn;mh1jW1;ni2 expð�smix=s2;nÞ ð64Þ

Thus spin-lattice and spin-spin relaxation processes must be differ-
ent enough for cross-peaks to occur in the spectra.

Furthermore the observation of cross-peaks in T1–T1 and T2–T2

spectra requires ‘mixing’: if smix = 0 then

ST2�T2 ðn;mÞ ¼ m0h1jW2;nihW2;mj1i
X

p

hW2;njW1;pihW1;pjW2;mi ð65Þ

or – owing to the closure relationshipX
p

jW1;pihW1;pj ¼ Id ð66Þ

for the orthonormal bases – more simply
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ST2�T2 ðn;mÞ ¼ m0h1jW2;nihW2;njW2;mihW2;mj1i

¼ m0dn;mh1jW2;ni2; ð67Þ

which indicates that only diagonal peaks will appear in the spec-
trum. The same goes for the T1–T1 spectra. Thus, even when jW1,ni
and jW2,ni are different, there may be no cross-peaks in the spec-
trum, unless smix is properly chosen.

(b) Symmetry of the 2D spectra

The T1–T1 and T2–T2 spectra are always symmetrical:

ST1�T1 ðn;mÞ ¼ ST1�T1 ðm;nÞ ð68Þ

and

ST2�T2 ðn;mÞ ¼ ST2�T2 ðm;nÞ ð69Þ

which can be deduced from Eqs. (24) and (26).
This important property was not verified in the pioneering work

[35] in the subject, where the T2–T2 spectra obtained using the
algorithm available at the time [33] were asymmetric. Now such
asymmetry can surely be accounted for faults in experimental pro-
tocols or data processing, rather than for any particular properties
of the studied system.

(c) Overall intensity of the 2D spectra

The overall intensity of the T1–T2 spectrum corresponds to the
total magnetisation of the sample at equilibrium:X
n;m

ST1�T2 ðn;mÞ ¼ m0h1j1i ð70Þ

where h1j1i ¼
R

/ðrÞdr is the total volume occupied by fluid in the
sample and where we used Eq. (66) in summing the intensities of
all components in the spectrum.

Similarly, the overall intensity of the T2–T2 spectrum corre-
sponds to the magnetisation which would remain, should the sys-
tem be subject to longitudinal relaxation during the period smix

only, as in the inversion-recovery experiment:X
n;m

ST2�T2 ðn;mÞ ¼ m0

X
n

h1jW1;ni2 expð�smix=s1;nÞ

¼ M1ðsmixÞ ð71Þ

Finally, the overall intensity of the T1–T1 spectrum corresponds
to the magnetisation which would remain, should the system be
subject to transverse relaxation during the period smix only, as in
the CPMG experiment:X
n;m

ST1�T1 ðn;mÞ ¼ M2ðsmixÞ ð72Þ

This property makes clear the difference between information
that can be extracted from the intensities of the T1–T2 and T2–T2

spectra. This difference was already observed experimentally: the
intensities of the T1–T2 spectra of cements during their setting
were found remarkably invariable, while those of the T2–T2 spectra
were evolving markedly [46].

(d) Conditions for eigenmodes to reveal themselves in the spectra

Both 1 and 2D spectra provide information on the same relaxa-
tion eigenmodes jW1,ni’s and jW2,ni’s and so it is quite natural to
expect that the spectra are related to each other in one way or
another.

First, as was pointed out previously, there can be peaks only in
those locations of the spectra where their coordinates correspond
to the eigenvalues s1,n’s and s2,n’s.
Second, as the scalar product h1jW2,ni intervenes as a multipli-
cative factor in the expression for the intensity of peaks in both
the 1D T2 and 2D T1–T2 spectra, a particular jW2;n0 iwill not manifest
itself as a peak in either spectrum unless h1jW2;n0 i – 0. This also
holds when read another way round, i.e. if h1jW2;n0 i – 0, then
jW2;n0 i will give rise to a peak in both the 1D and 2D spectra. This
is obviously true for the 1D T2-spectrum, as here the intensity of
the peak corresponding to jW2;n0 i can be written as m0h1jW2;n0 i2.
For the 2D T1–T2 spectra, one can consider its projection on to T2

axis:

X
n

ST1�T2 ðn;n0Þ ¼ m0h1jW2;n0 i2 ¼ ST2 ðn0Þ ð73Þ

and notice that, if h1jW2;n0 i– 0, then at least one term in the sum on
the left hand side of this equation is not equal to zero as well. For
the T2–T2 spectra, we can express the intensity of the diagonal peaks
as

ST2�T2 ðn0;n0Þ ¼ m0h1jW2;n0 i2
X

p

W2;n0 jW1;p
	 
2 exp � smix

s1;p

� �
ð74Þ

whose right hand side is a sum of positive terms only. Thus it would
suffice to show that one of these terms is not zero to prove that so is
the intensity of the diagonal peak. This is indeed the case: since
hW2;n0 jW2;n0 i ¼ 1 and jW1;ni’s constitute an orthonormal basis, the
Parseval relationship hW2;n0 jW2;n0 i2 ¼

P
phW2;n0 jW1;pi2 ¼ 1 can be

written, which implies that at least one of hW2;n0 jW1;pi’s is not zero
and thus our statement is proved. The same holds for spin-lattice
eigenmodes in the 1D T1-spectrum and the 2D T1–T2 and T1–T1

spectra.

(e) Relationships between the 1 and 2D spectra

Moreover, as can bee seen from Eq. (73), projecting the T1–T2

spectrum on to T1- or T2-axis will result in a 1D T1- or T2-spectrum,
respectively:

X
m

ST1�T2 ðn;mÞ ¼ m0h1jW1;ni2 ¼ ST1 ðnÞ

X
n

ST1�T2 ðn;mÞ ¼ ST2 ðmÞ ð75Þ

Similar relationships can be established between the T1–T1 and T2–
T2 spectra and their projections on to the coordinate axes:X

m

ST1�T1 ðn;mÞ ¼ m0

X
p

h1jW1;nihW1;njW2;pihW2;pj1i

� exp � smix

s2;p

� �

¼
X

p

ST1�T2 ðn; pÞ exp � smix

s2;p

� �
ð76Þ

andX
n

ST2�T2 ðn;mÞ ¼ m0

X
p

h1jW2;nihW2;njW1;pihW1;pj1i

� exp � smix

s1;p

� �

¼
X

p

ST1�T2 ðp;nÞ exp � smix

s1;p

� �
ð77Þ

Finally, if we assume that none of jW1,ni’s is orthogonal to j1i, i.e.,
h1jW1,ni– 0 a relationship between the corresponding terms in
the T1–T2 and T2–T2 spectra can be establish:
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ST2�T2 ðn;mÞ ¼ m0

X
p

h1jW2;nihW2;njW1;pihW1;pj1ih1jW1;pihW1;pjW2;mihW2;mj1i
hW1;pj1i2

� exp � smix

s1;p

� �

¼
X

p

ST1�T2 ðp; nÞST1�T2 ðp;mÞ
ST1 ðpÞ

exp � smix

s1;p

� �

A similar relation can be written for the T1–T1 spectra.
Thus, all relaxation spectra are interdependent: Eq. (75) shows

that the 1D spin-lattice and spin-spin spectra can be calculated
from the T1–T2 spectrum; to lesser extent, Eq. (78) – which holds
only when all spin-lattice modes are visible, i.e. h1jW1,ni– 0 – indi-
cates that both T1–T1 and T2–T2 spectra can, independently of the
smix length, be calculated from the T1–T2 spectrum and so the latter
contains maximum of information about the system that can pos-
sibly be obtain by relaxation measurements.

(f) Signs of the spectral components in 1 and 2D spectra

According to Eq. (20), the intensities of the spectral lines in the
1D spectra can be either positive or zero. This feature is peculiar to
the 1D spectra, though. Eqs. (22), (24) and (26) do not preclude the
appearance of peaks with negative intensities in the 2D spectra.
While the 2D ILT algorithm available to date does exactly the oppo-
site, T1–T2 spectra with negative peaks have been simulated for a
system consisting of one slit-like pore [50].

In this section, we shall clarify the situation for the T1–T2 spec-
tra within the eigen-modes formalism and making no assumption
about the form of the diffusive system: we shall prove that such
spectra, should they contain cross components, will always contain
peaks with negative intensities. The case of the T1–T1 and T2–T2

spectra will be dealt with further below making use of the pertur-
bation theory and within the first-order two-site exchange model.
Here we shall limit ourselves to pointing out that Eq. (74) implies
that all the diagonal peaks have non-negative intensities.

It is first and foremost for their cross-peaks that T1–T2 spectra
are acquired. For such peaks to occur, the jW1,ni and jW2,ni sets
must be different. Furthermore, unless the system is symmetric,
h1jW1,ni– 0 and h1jW2,ni– 0 for any n and it is always possible
to make them strictly positive by changing the sign of some of
the modes. Then, at least, some of the terms un,m = hW1,njW2,mi of
the unitary matrix U = (un,m) will not be equal to zero, and as jW2,ni
are orthogonal to each other, the coefficients un,m will verifyX

p

un;pum;p ¼ 0 ð79Þ

for given n and m. Quite clearly, Eq. (79) cannot be satisfied unless
at least one un0 ;m0 of the coefficients is negative and so we can write

ST1�T2 ðn0;m0Þ ¼ m0h1jW1;n0 iun0 ;m0 hW2;m0 j1i < 0 ð80Þ

This proves that at least one of the components of the T1–T2 spec-
trum will have negative intensity. A mathematically more rigorous
proof of the statement, though possible, is beyond the scope of the
present manuscript.

(g) Relative intensities of the diagonal and cross-peaks in the T1–T1

and T2–T2 spectra

It has become a habit to single out groups of four peaks, called
‘exchange squares’, of which two, indexed (n,n) and (m,m), are
diagonal and two other, indexed (n,m) and (m,n), cross-peaks. As
was shown in a of the present section, the squares are always sym-
metric with respect to the diagonal. In the T2–T2 spectra of hetero-
geneous samples, cross-peaks (n , m) and (m , n) have most often
been interpreted as the presence of exchange of matter between
two domains n and m, whatever they are, and which we shall,
hereafter, associate with modes jW2,ni and jW2,mi. The measure-
ment of the intensities of these peaks as a function of the smix

length was proposed as a method for studying kinetics of the ex-
change [47]. The method encouraged search for experimental con-
ditions that would boost intensity of the cross-peaks [49]. The
latter was never reported to exceed 30% of the overall intensity
of the ‘exchange square’, though [46]. In this section, we shall
prove that, in any ‘exchange square’, the sum of the absolute values
of the intensities of the cross-peaks cannot exceed that of the diag-
onal peaks.

Indeed, we obtain

jh1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1ij

6
h1jW2;ni2hW2;njW1;pi2 þ hW1;pjW2;mi2hW2;mj1i2

2
ð81Þ

by setting a = h1jW2,nih W2,njW1,pi and b = h W1,pjW2,mihW2,mj1i in
the well-known inequality jabj 6 (a2 + b2)/2. Multiplying Eq. (80)
by exp(�smix/s1,p) and summing over p gives

X
p

jh1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1ij exp �smix

s1;p

� �

6
ST2�T2 ðn;nÞ þ ST2�T2 ðm;mÞ

2m0
; ð82Þ

The latter combined with Eq. (24) gives

jST2�T2 ðn;mÞj ¼ jST2�T2 ðm;nÞj

<
1
2
ðST2�T2 ðn;nÞ þ ST2�T2 ðm;mÞÞ; ð83Þ

which corresponds to our statement.
By studying the subject within the first-order two-site exchange

model (see below), we shall show that the 50% limit established
here for the total relative intensity of the cross-peaks can indeed
be achieved experimentally.

Note also that, when there is a cross-peak (n,m) in a
spectrum, then there exists an index p

0
for which

h1jW2;nihW2;njW1;p0 i hW1;p0 jW2;mihW2;mj1i– 0 in Eq. (24). From this
we deduce that h1jW2;nihW2;njW1;p0 i – 0 and h1jW2;nihW2;njW1;p0 i– 0,
and from Eq. (74) that sT2�T2 ðn;nÞ– 0 and sT2�T2 ðm;mÞ– 0. Thus,
whatever the intensities of the cross-peaks are, there are always
diagonal peaks corresponding them, of which at least one is, due to
Eq. (83), more intense than any of the cross-peaks.

Finally, when the 50% limit is reached, i.e. when

jST2�T2 ðn;mÞj ¼ jST2�T2 ðm;nÞj

¼ 1
2
ðST2�T2 ðn;nÞ þ ST2�T2 ðm;mÞÞ; ð84Þ

and taking into account that

jsT2�T2 ðn;mÞj 6 m0

X
p

jh1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i

exp �smix

s1;p

� �
; ð85Þ

then necessarily:

jsT2�T2 ðn;mÞj ¼ m0

X
p

jh1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i

exp � smix

s1;p

� �
; ð86Þ

and
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Fig. 7. 2D (a) correlation T1–T2, and exchange (b) T2–T2 and (c) T1–T1 relaxation
spectra as predicted by the perturbation theory. The diagonal peaks are intense
(bigger rounds) and positive (white rounds) in all three spectra. The T1–T2 spectrum
is anti-symmetric, while the T2–T2 and T1–T1 are symmetric. The positive and
negative peaks are coloured in white and grey respectively.
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m0

X
p

jh1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1i exp � smix

s1;p

� �

¼ 1
2
ðsT2�T2 ðn;nÞ þ sT2�T2 ðm;mÞÞ; ð87Þ

The latter, taking into account Eq. (81), is met only when

jh1jW2;nihW2;njW1;pihW1;pjW2;mihW2;mj1ij

¼ h1jW2;ni2hW2;njW1;pi2 þ hW1;pjW2;mi2hW2;mj1i2

2
ð88Þ

for any p. And Eq. (88) itself holds only when

jh1jW2;nihW2;njW1;pij ¼ jhW1;pjW2;mihW2;mj1ij ð89Þ

for any p. From this we deduce that the four peaks of the ‘exchange
square’ have equal intensities:

jsT2�T2 ðn;mÞj ¼ jsT2�T2 ðm;nÞj

¼
X

p

jh1jW2;nihW2;njW1;pij2 exp � smix

s1;p

� �

¼
X

p

jhW1;pjW2;mihW2;mj1ij2 exp � smix

s1;p

� �

¼ sT2�T2 ðn;nÞ ¼ sT2�T2 ðm;mÞ ð90Þ

In simulated and experimentally acquired spectra reported so far
[46,49], the intensities of the cross-peaks were well below their the-
oretical maximum. Moreover, one of the diagonal peaks was invari-
ably much more intense than the other. Our work shows that, when
intensities of the cross-peaks approach their theoretical maximum,
those of the diagonal peaks become similar to one another. The
same holds for the T1–T1 spectra.

4.2. 2D relaxation spectra in case of alike sets of eigenmodes

In porous media, phenomenologically different spin-lattice and
spin-spin relaxations are both reliant on the same diffusive process
and so their respective sets of eigenmodes often turn out rather
similar to each other. In such situation, one can take advantage
of the formulae provided by the perturbation theory, given in Sec-
tion 2.1.2, to establish a number of approximative expressions –
complementary to those determined exclusively within the ei-
gen-modes formalism – for the forms that 2D spectra can take
(Fig. 7).

The zero-order approximation to the intensity of the diagonal
peaks of the T1–T2 spectra is

sT1�T2 ðn;nÞ � m0hW1;nj1i2 ð91Þ

Similarly, the first-order approximation to the intensity of the
cross-peaks of the spectra is

sT1�T2 ðn;m – nÞ � m0hW1;nj1ihW1;mj1i
hW1;mjdR; dqjW1;ni

1=s1;n � 1=s1;m
ð92Þ

The diagonal components – being the only to have the zero-order
term – will be more intense than their cross counterparts. This, in-
deed, was observed in cements [35].

A striking feature of the spectra that can be deduced from Eq.
(92) is their anti-symmetry with respect to the diagonal:

sT1�T2 ðn;mÞ � �sT1�T2 ðm;nÞ for m – n ð93Þ

This shows that there are as many negative as there are positive
cross-peaks and corroborates our prediction, made in (1c) of the
present section, of ineluctable presence of peaks with negative
intensities in the T1–T2 spectra. In practice, the ineptitude of the
2D ILT-algorithm at producing peaks of negative intensity could
account for the fact that (positive) cross-peaks were so far ob-
served only in that half of the coordinate plane where T1 > T2.
The anti-symmetry given by Eq. (93) is silent as to whether it
was accidental or not that all peaks with intensities of the same
sign bunched together on one side of the diagonal. It suggests,
however, that equally intense negative peaks should have ap-
peared on the opposite side of the diagonal from the positive com-
ponents visible in the spectra [35].

The first-order approximations to the intensity of the cross and
diagonal components of the T1–T1 and T2–T2 spectra are,
respectively,

sT2�T2 ðn;m – nÞ � m0hW1;nj1ihW1;mj1i
hW1;njdR; dqjW1;mi

1=s1;n � 1=s1;m

exp � smix

s1;n

� �
� exp � smix

s1;m

� �� �
ð94Þ

sT2�T2 ðn;nÞ � m0hW1;nj1i2 exp � smix

s1;n

� �
ð95Þ

and

sT1�T1 ðn;m – nÞ � �m0hW1;nj1ihW1;mj1i
hW1;njdR; dqjW1;mi

1=s1;n � 1=s1;m

exp � smix

s2;n

� �
� exp � smix

s2;m

� �� �
ð96Þ

sT2�T2 ðn;nÞ � m0hW1;nj1i2 exp � smix

s2;n

� �
; ð97Þ
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from where we obtain

sT2�T2 ðn;m – nÞ � sT1�T2 ðn;mÞ exp �smix

s1;n

� �
� exp � smix

s1;m

� �� �
ð98Þ

sT1�T1 ðn;m – nÞ � �sT1�T2 ðn;mÞ exp � smix

s2;n

� �
� exp � smix

s2;m

� �� �
ð99Þ

and

sT2�T2 ðn;nÞ � sT1�T2 ðn;nÞ exp � smix

s1;n

� �
ð100Þ

sT1�T1 ðn;nÞ � sT1�T2 ðn;nÞ exp � smix

s2;n

� �
ð101Þ

Not only these expressions verify the symmetry elements
established above, but also corroborate the relationships between
the T1–T2 spectrum and the T1–T1 and T2–T2 spectra. Within the
perturbation theory, each of them can be calculated from either
of the two other and so each of them contain exactly the same
information about the system. In the present case, the cross-peaks
in each of the spectra are all proportional to their counterparts in
the other spectra.

The T1–T2 spectrum – despite its being often regarded as a cor-
relation and not an exchange spectrum – contains as much infor-
mation on the exchange phenomena that take place in the
system as do the T1–T1 and T2–T2 spectra. Moreover, from Eqs.
(97) and (98), one can see that the cross-peaks in the T1–T2 spec-
trum are the most intense and so the T1–T2 spectrum has the best
signal-to-noise ratio. Thus, to the extent to which the result – ob-
tained here within the perturbation theory – can be generalised,
the very use of the exchange T1–T1 and T2–T2 spectra to study ex-
change becomes questionable.

Finally, we uncover an additional symmetry between signs of
the cross-peaks in the exchange spectra. For n < m and so, to the
zero-order, for s1,n = s2,n > s1,m = s2,m, the sT2�T2 ðn;mÞ component
has the same sign as the sT1�T2 ðn;mÞ component, while the
sT1�T1 ðn;mÞ component has the opposite sign. Thus the cross-peaks
in the T1–T1 and T2–T2 spectra have opposite signs. This is again
consistent with the reported experimental data [35], where to
the cross-peak in the T1–T2 spectrum, situated in the zone where
T1 > T2, corresponded a pair of positive cross-peaks in the T2–T2

spectrum.

4.3. 2D spectra of systems with matter exchange between pairs of
domains

Quantitative analysis of cross-peaks in the experimentally ac-
quired exchange spectra has so far been carried out within the
first-order two-site exchange model [46–49]. In this phenomeno-
logical model, the spectrum is regarded as a set of separate ‘ex-
change squares’, each of which being assigned to two particular
domains of the system between which exchange of matter is sup-
posed to take place. In other terms, it can be viewed as a particular
kind of relaxation eigenmodes model in which each of the modes is
supposed to correspond to one particular domain of the system
and to be able to couple with only one other of the modes.

The structural properties of the 2D spectra as determined by
Eqs. (47)–(49) within the two-site exchange model are in perfect
accord with those established within the eigen-modes formalism,
e.g. the exchange spectra are symmetric and their diagonal compo-
nents have positive intensities. However, any attempt to apply the
two-site exchange model to a network of three and more domains
exchanging matter – or, in other words, to three or more coupled
modes – would fail [D’Espinose, personal communication].
Likewise, the two-site exchange model also allows to rediscover
the features of the spectra found within the perturbation theory.
Indeed, by setting b1 � b2, which implies that the spin-lattice and
spin-spin eigenmodes sets are similar to one another, the T1–T2

and T2–T2 spectra can be approximated to the first-order with re-
spect to db = b2–b1 as

sT1�T2 ðs1;þ;s2;þÞ � m0ðVA þ VBÞ cos2ðb1 � b0Þ
sT1�T2 ðs1;þ;s2;�Þ � �sT1�T2 ðs1;�;s2;þÞ � m0ðVA þ VBÞ cosðb1 � b0Þ

sinðb1 � b0Þdb ð102Þ
sT1�T2 ðs1;�;s2;�Þ ¼ m0ðVA þ VBÞ sin2ðb1 � b0Þ

and

ST2�T2 ðs2;þ;s2;þÞ � m0ðVA þ VBÞ cos2ðb1 � b0Þ exp � smix

s1;þ

� �
ST2 � T2ðs2;þ; s2;�Þ � m0ðVA þ VBÞ cosðb1 � b0Þ sinðb1 � b0Þ

db exp � smix

s1;þ

� �
� exp � smix

s1;�

� �� �

ST2 � T2ðs2;�; s2;�Þ � m0ðVA þ VBÞ sin2ðb1 � b0Þ exp � smix

s1;�

� �
ð103Þ

Thus we find again that the T1–T2 spectrum is anti-symmetric with
respect to the diagonal and that the components of the T1–T2 spec-
trum are proportional to their counterparts in the T2–T2 spectrum.

In general, Eqs. (47)–(49) allow to easily find out the sign of the
components of the spectra. Note that {exp (� smix/s1,+) � exp (�
smix/s1,�)} and {exp (� smix/s2,+) � exp (� smix s2,�)}are positive
ass1,+ P s1,� and s2,+ P s2,�. Moreover all cosines that intervene
in the expressions are positive as the angles b0, b1 and b2 were de-
fined to vary within [0,p/2], while the sign of the sines will depend
on the relative values of the angles. From Fig. 3, the sign of the
components of the spectra can be seen to depend on the relative
values of the quantities 0, dR1 = 1/R1,B � 1/R1,A and dR2 = 1/
R2,B � 1/R2,A only.

Remarkablly, the laws found within the perturbation approach
for the signs of the components hold here when dR1 and dR2 have
the same sign (Fig. 8a and c). In porous media – where relaxation in
the interstitial fluid is mainly due to relaxation at the interface be-
tween the fluid and the solid matrix – T1 and T2 can reasonably be
assumed to be proportional to one onother with the quotient that
typically ranges between one and ten. Then dR2/dR1 > 1 and we can
expect that spectra will most often assume the form of Fig. 8c. This
was indeed observed experimentally in cements, where the T1–T2

spectrum contained a prositive cross-peak within the zone where
T1 > T2 and the T2–T2 spectrum contained a pair of positive cross-
peaks [35]. When dR1 and dR2 have oposite signs, i.e. when
T1,B > T1,A and T2,B < T2, A or T1,B < T1,A and T2, B > T2,A – the situation
that cannot be dealt with within the perturbation theory – a neg-
ative peak appears on the diagonal of the T1–T2 spectrum (Fig. 8b).
Such situation could possibly occur in systems with wide ranges of
T1/T2 varying from one domain to another, like in sedimentary
rocks containing clay clusters or complex biological systems.

Finally, the factor exp(�smix/s1,�) in Eqs. (48) and (49) reduces
the intensities of the diagonal peaks, while increasing those of
the cross-peaks. Thus, acquiring spectra with smix much longer
than s1,� will result in relatively stronger diagonal peaks:

IrelT2�T2
¼

ST2 � T2ðs2;þ; s2;�Þ
ST2 � T2ðs2;þ; s2;þÞ þ ST2 � T2ðs2;�; s2;�Þ

¼ sinð2ðb2 � b0ÞÞ sinð2ðb2 � b1ÞÞ
2þ 2 cosð2ðb2 � b0ÞÞ cosð2ðb2 � b1ÞÞ

ð104Þ

Likewise, the relative intensity of the peaks in the T1–T1 spectrum at
long smix :
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c

Fig. 8. Signs of the various components in the exchange spectra as a function of dR1 = 1/T1,B–1/T1,A and dR2 = 1/T2,B–1/T2,A as predicted by the two-site exchange model. The
signs are independent of smix.

Fig. 9. Evolution the relative intensity of the cross-peaks in the T1–T1 (continuous
line) and T2–T2 (dashed line) spectra as a function of b0 in the limit of long smix and
for two arbitrary values of b1 and b2 . The limit of +50% is reached for a particular
value of b0 , while that of �50% could not quite be achieved.

Fig. 10. Model porous media used in the simulations with pores coloured in white
and solid matrix in grey. In our simulations, a = 5 lm.
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IrelT1�T1 ¼
ST1 � T1ðs1;þ; s1;�Þ

ST1 � T1ðs1;þ; s1;þÞ þ ST1 � T1ðs1;�; s1;�Þ

¼ � sinð2ðb1 � b0ÞÞ sinð2ðb2 � b1ÞÞ
2þ 2 cosð2ðb1 � b0ÞÞ cosð2ðb2 � b1ÞÞ

ð105Þ

These relative intensities can be shown to vary between + and �50%
(Fig. 9). The former limit can be achieved when
2b2 = b0 + b1 + p(n + 1/2) and 2b1 = b0 + b2 + p(n + 1/2), where n is
integer, for the T2–T2 and T1–T1 spectra, respectively. The latter limit
can, in theory, be reached when b0 = b1 + p(n + 1/2) and
b0 = b2 + p(n + 1/2) for the T2–T2 and T1–T1 spectra, respectively. In
practice, though, it turns out impossible as b0 is restrained to
[0,p/2].

5. Numerical simulations

The algorithm of the numerical method described in Section 3
was coded in Fortran 95 programming language. To test our pro-
gramme, we used it to solve Eq. (4) and calculate up to a 100 eigen-
modes satisfying the boundary condition of Eq. (5) for several
geometrically simple 1 and 2D model porous systems for which
the boundary problem can be solved analytically. Our programme
passed this preliminary test: it turned out quick and the relative



Fig. 11. The T1–T2 spectrum of the model porous system of Fig. 10 simulated as explained in Section 3.

Fig. 12. The T2–T2 spectrum of the model porous system of Fig. 10 simulated as explained in Section 3.
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error in the eigenvalues did not exceed 1% and that in the eigen-
modes was even smaller.

To put the general laws we discovered theoretically to the proof,
we simulated 2D relaxation spectra of the model porous system of
Fig. 10 as described in Section 3. Herein we shall content ourselves
with a brief discussion of T1–T2 and T2–T2 spectra. A thorough
numerical analysis of all three types of 2D relaxation spectrum will
be the subject of a separate manuscript (in preparation).

The square system of side length of ten micrometer was divided
into ten thousand square pixels of side length dx equal to hundred
nanometer by a Cartesian mesh. The diffusion coefficient D and
surface longitudinal q1 and transverse q2 relaxation rates were
set to 10�10 m2/s, 4 � 10�5 m/s and 8 � 10�5 m/s, respectively.
The inherent relaxation time – measure of kinetics of relaxation
driven by interactions that take place inside the interstitial fluid
and unrelated to its interactions with the solid matrix – was set
to 0.1 s. The T2–T2 spectrum was calculated by setting smix = 0.1 s.

Thus calculated T1–T2 and T2–T2 spectra – shown in Figs. 11 and 12,
respectively – have a large number of diagonal and cross-peaks –
whose intensities are presented in Tables 1 and 2. They reflect
interactions among various eigenmodes for each of the relaxation
processes, rather than exchange among different compartment of
the system as the number of diagonal peaks in the spectra exceed
that of the compartments. All the features of the correlation and
exchange spectra predicted within the perturbation approach re-
veal themselves in the T1–T2 spectrum of Fig. 11: the diagonal
peaks have positive intensities; except for the pairs of peaks
(3,4) and (4,3), and (5,6) and (6,5) – the positive and negative
cross-peaks form a anti-symmetric pattern. The cross-peaks lo-
cated symmetrically with respect to the diagonal in the T1–T2



Table 1
Calculated intensities of the peaks of the T1–T2 spectrum of Fig. 11. The indices n and m here number the peaks of Fig. 11 from the right to the left and from the top to the bottom
respectively. The values for the least intense peaks should only be regarded as an indication of their order of magnitude because of the approximations introduced by the FDTD-
method.

6 5 4 3 2 1 n/m

�0.000490 �0.000200 �0.002300 �0.001400 �0.029000 0.440000 1
�0.000280 �0.000041 0.000140 0.000038 0.370000 0.034000 2

0.000280 0.000090 �0.000100 0.003600 �0.000170 0.002900 3
0.000650 0.000310 0.005500 �0.000079 �0.000360 0.004900 4
0.000078 0.000240 �0.000160 �0.000054 0.000053 0.000042 5
0.000630 0.000088 �0.000200 �0.000098 0.000160 0.000070 6

Table 2
Calculated intensities of the peaks of the T2–T2 spectrum of Fig. 12. The indices n and m here number the peaks of Fig. 12 from the right to the left and from the top to the bottom
respectively. The values for the least intense peaks should only be regarded as an indication of their order of magnitude because of the approximations introduced by the FDTD-
method.

6 5 4 3 2 1 n/m

0.0001100 0.0000650 0.0075000 0.0044000 0.0490000 0.6800000 1
0.0000220 0.0000096 0.0005400 0.0003200 0.0360000 0.0490000 2

0.0000490 0.0000290 0.0003200 0.0044000 3
0.0000012 0.0000820 0.0000490 0.0005400 0.0075000 4

0.0000096 0.0000650 5
0.0000012 0.0000220 0.0001100 6
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spectrum (see Table 1) have intensities of the same order of mag-
nitude. Furthermore, viewed within the first-order two-site ex-
change model, the simulated spectra exemplify the situation of
Fig. 8c: most positive cross-peaks in the T1–T2 spectrum of
Fig. 11 are in the zone where the T1 is longer than T2; in the the
T2–T2 spectrum of Fig. 12, most peaks are positive. Nevertheless
the spectra contain some features that have not been reported be-
fore: the correlation spectrum T1–T2 contains some negatives
peaks, though of low intensity, in the domain where T1 > T2; there
are also weak negative components in the exchange T2–T2 spec-
trum. This must be a direct consequence of including a mixing per-
iod during which the system evolves under longitudinal relaxation,
and that the sign of the scalar products that intervene in the for-
mulae describing the structure of the T2–T2 spectra are not under
full control of the spectroscopist running the experiment and can
be made either positive or negative. For the time being we cannot
give a more physical explanation of this phenomenon.
6. Conclusion

We studied the exchange spectra within the eigen-modes for-
malism and our investigation revealed a number of general laws
that determine the structure of the spectra. Here are the most
striking of them:

(a) the exchange spectra are symmetric;
(b) there can be no cross-peak with no diagonal peaks that cor-

respond to it;
(c) the 1D and 2D spectra are interdependent;
(d) where the perturbation theory is applicable, the correlation

and exchange spectra contain the same information about
exchange;

(e) the correlation spectrum always has negative cross-peaks;
(f) the sum of the absolute values of the intensities of the cross-

peaks can not exceed 50% of the sum of the absolute values
of all peaks in the spectrum.

The law (e) lays bare the major fault in the existing ILT-algo-
rithm – conjecture that all the peaks are positive, and makes clear
the need to seek for alternatives. The laws established herein can,
we believe, be instrumental in such search.
We also analysed the spectra within the perturbation theory as
well as the two-site first-order exchange model. These analyses
yielded three more features borne by the spectra of the porous
systems:

(a) the 50% extremum mentioned in (f) can indeed be achieved;
(b) the correlation spectrum is anti-symmetric with respect to

the diagonal and has an equal number of positive and nega-
tive cross-peaks;

(c) the signs of the cross-peaks in the correlation spectrum
determine thoroughly those in the exchange spectra.

The last two features, though corroborated by several experi-
mental and computer-simulation studies, ought to be viewed as
a strong tendency rather than a law. We found that it can have
exceptions when relaxation rates assigned to each of the domains
of a multi-domain system meet certain conditions.
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